众所周知,我们正在进入数字经济时代,算法已成为公司核心竞争力的一部分。这不会改变业务的基本逻辑。
算法不是决定性胜利的基础,而是公司的使命和价值观。具有强大算法但价值扭曲的公司可能会产生爆炸性产品,但这样的公司将不会赢得尊重,也不值得未来。
文章“外卖车手卡在系统中”将算法暴露给公众。这样的故事已经发生了,但是以前没有人发现过。
这样的故事几乎是不可避免的。每当技术进步伴随着大小不一的矛盾和利益冲突时,我们都渴望迎接新时代,同时又重新审视商业道德和秩序,而不会感到焦虑。
在平台时代,这一场景的创造者几乎包括我们所有人。对于平台而言,每分钟的改进可能意味着成本降低和利润率提高。
这可能是击败同行的关键时刻。计件工资模型告诉外卖兄弟,只有接受更多的订单,您才能赚更多的钱-每个平台上都有700万全职和兼职外卖兄弟注册,背后的每个人都是一个。
家庭生活;消费者可能不愿意承认他们也是煽动者,但是外卖模式不是快节奏的消费社会的刺激因素吗?平台公司,外卖兄弟和消费者都是速度追逐者,它们催生了这种“联合力量”。彼此重合。
算法无情地将这种原始驱动力推向了极致。最终结果是每个人都被困在系统中。
不同之处在于平台公司和消费者被认为是受益者,而骑行者承担的费用却越来越高。无论算法多么聪明,它都是无知的。
该算法不会考虑每天在风,雨和交通中行走的面孔。它不关心那些外卖兄弟的故事,他们的笑容和眼泪,并且不会因系统中的碰撞加速而引起事故。
这些事故不仅威胁到外卖兄弟的生命,而且威胁到所有在街上行走的人。人们。
不要以为所有这些都是不可避免的,也不要以为这是为了提高效率而付出的代价。算法没有价值,但是人有价值。
如果有可能打开“算法黑匣子”,则返回在每个公司中,我们仍然会看到支持该算法的人。人们有责任赋予算法人性的灵魂,并将算法的结果引导到人们最追求的美丽。
人是算法的准绳。因此,算法如何影响人类行为,如何调整人与平台之间的关系,利益平衡将落到哪一侧,算法是否会导致灾难性的结果,将人与社会带到人类的对立面理想,算法背后的人们应该始终保持警惕,并在必要时按停止按钮。
对于具有算法优势的公司来说,对他们来说,最大的考验不是如何使算法发挥最大作用并开发才能。如果您不知道如何将算法置于人类的尺度之下,那么迟早您会受到算法的抨击。
在这方面,将外卖车手的困境归咎于消费者,并要求消费者给车手5分钟的时间,这类似于流氓的聪明。但是,如果愤怒完全针对平台公司,恐怕很难真正解决我们的问题。
但是很明显,平台公司可以在这种困境中做更多的事情。正如他们公开表达的那样,系统的问题毕竟需要由系统背后的人员来解决。
我们注意到,主要的食品配送平台已经开始调整其规则。这是一个好的开始。
公司: 深圳市捷比信实业有限公司
电话: 0755-29796190
邮箱: ys@jepsun.com
产品经理: 汤经理
QQ: 2057469664
地址: 深圳市宝安区翻身路富源大厦1栋7楼

更多资讯
获取最新公司新闻和行业资料。
- 长寿命JY系列与HY系列核心优势解析:为何它们成为工业首选? 长寿命JY系列与HY系列的核心特点概述在现代工业设备中,零部件的耐用性与可靠性直接决定了生产效率和维护成本。长寿命JY系列与长寿命HY系列凭借其卓越的设计理念与材料工艺,已成为众多行业中的首选解决方案。这两款系列...
- Viking-LRP系列合金电阻器:为何成为高端电子设备的核心元件? Viking-LRP系列合金电阻器的技术优势深度剖析随着电子设备向小型化、高功率密度方向发展,传统电阻已难以满足现代系统对热稳定性和电气性能的要求。光颉Viking-LRP系列大功率合金电阻器,以其先进的材料科学与制造工艺,正在...
- 深入剖析Everohms Pericom Diodes Inc. 二极管的技术创新与市场竞争力 从技术创新到市场落地:Pericom二极管如何重塑车用功率器件格局作为全球领先的半导体解决方案提供商之一,Everohms Pericom Diodes Inc. 不仅继承了原Pericom在模拟与混合信号集成电路领域的深厚积累,更在二极管细分领域实现了多项...
- 深入解析光颉精密电阻的技术优势与市场竞争力 光颉精密电阻的技术革新与行业地位作为全球领先的电子元器件制造商之一,光颉科技持续投入研发,其精密电阻系列已广泛应用于消费电子、汽车电子、物联网及智能制造等领域,赢得业界高度认可。1. 先进制造工艺保障一致...
- 深入解析:为什么AMR传感器与MRAM是未来低功耗物联网的核心? 低功耗物联网时代的双核引擎:AMR传感器与MRAM随着物联网(IoT)设备数量呈指数级增长,对低功耗、高可靠性、长续航的硬件需求日益迫切。在此背景下,基于自旋电子学的AMR传感器与MRAM因其独特性能优势,正逐渐成为支撑下一...
- 变阻器在结构上与电位器有很大关系,但它们不用作分压器,而是用作可变电阻器 变阻器变阻器在结构上与电位器有很大关系,但它们不用作分压器,而是用作可变电阻器。它们只能使用 2 个端子,而不是 3 个端子的电位器。一种连接在电阻元件的一端,另一种连接在可变电阻器的雨刷器上。在古代,变阻器...
- 深入解析DIOFET与GaN MOSFET:为何它们正在颠覆传统硅基功率器件? 引言:从“硅时代”迈向“新材料时代”在现代电子系统中,功率转换效率直接决定了设备的能耗水平与散热设计复杂度。过去几十年,硅基MOSFET几乎垄断了整个功率半导体市场。然而,随着能源效率标准日趋严苛,以及对小型...
- 如何判断晶振是否成功起振?实用检测方法与调试技巧 如何判断晶振是否成功起振?实用检测方法与调试技巧在嵌入式开发与硬件调试过程中,晶振是否正常工作是一个关键问题。若晶振无法起振,将导致主控芯片无法运行,系统彻底瘫痪。因此掌握有效的检测手段至关重要。本文...
- 深入解析RLS金属箔电流检测电阻:为何成为工业与汽车电子的理想选择 RLS金属箔电流检测电阻的技术突破与应用前景随着电力电子系统向更高效率、更小体积、更强集成度方向发展,传统绕线或厚膜电阻逐渐难以满足高端需求。RLS金属箔电流检测电阻应运而生,成为新一代高精度电流传感解决方案...
- 保险丝比组成它的纯金属的熔点低? 是的,保险丝的熔点通常比组成它的纯金属的熔点低。这是因为保险丝的主要目的是在电路中短路时迅速熔断,并将电路断开,而不是用于传输电流或冷却电路。因此,保险丝需要具有足够高的熔点,以确保在短路时能够快速熔...
- 数显压力开关:现代工业自动化控制的重要组成部分 数显压力开关是一种现代化的压力控制设备,它结合了传统机械式压力开关的实用性与数字技术的精准性。以成瑞品牌的数显压力开关为例,这类产品通常具备高精度的压力测量功能,能够实时显示当前系统内的压力值,并在达...
- 深入解析:为何SMFF1206成为可穿戴设备首选贴片电阻? 为什么SMFF1206在可穿戴设备中如此流行?近年来,智能手环、健康监测器、真无线耳机等可穿戴设备迅速普及,对元器件提出了“更小、更轻、更省电”的严苛要求。在这一背景下,SMFF1206贴片电阻凭借其极小的封装尺寸和良好的...
- 深入解析:为何SMFF1206 P800~与P2000~成为高密度电路板的理想之选 高密度电子设计中的功率电阻挑战随着电子设备向小型化、集成化方向发展,电路板空间日益紧张。在此背景下,高性能、小体积的功率电阻如SMFF1206 P800~与P2000~,凭借其卓越的功率密度与热性能,成为设计师的首选。一、体积与...
- 车用肖特基二极管的核心优势与应用解析 车用肖特基二极管的核心优势与应用解析随着汽车电子系统日益复杂,对元器件的效率、可靠性和耐久性提出了更高要求。车用肖特基二极管凭借其独特的电气特性,已成为现代汽车电源管理、电机控制和车载充电系统中的关键...
- tdk公司生产的产品名称是 作为世界著名的电子工业品牌,TDK一直在电子原材料及元器件上占有领导地位。其产品广泛应用于资讯,通讯,家用电器以及消费型电子产品,如移动电话,笔记本电脑,DVD/HDD录影机,平面显示器,汽车及其导航系统等。公司名...
- 深入解析Viking精密合金电阻:为何成为高端电子设计的首选? 深入解析Viking精密合金电阻:为何成为高端电子设计的首选?在高端电子系统的设计中,元器件的选择直接决定了系统的整体性能与寿命。Viking品牌的精密合金电阻,以其在材料科学、制造工艺与品质管理方面的深厚积累,成为...
- 保险丝是用武德合金还是铅锑合金做成的? 武德合金 武德合金用50%铋(Bi)、25%铅(Pb)、12.5%锡(Sn)和12.5%镉(Cd)制成的。它的熔点是70℃,比所有标准条件下为固态的金属熔点都低。西班牙人乌罗阿和武德分别于1935年和1941 年发现了铂主要以游离态和合金形式...
- 深入解析MOS管H桥电路中GaN MOSFET与硅基MOSFET的核心差异 引言:MOS管H桥在电力电子中的核心地位MOS管H桥电路广泛应用于电机驱动、逆变器和电源转换系统中,其性能直接决定整个系统的效率与可靠性。随着功率器件技术的演进,传统硅基MOSFET正逐步被新型宽禁带半导体材料如氮化镓(...
- 为什么使用并联电容器来提高功率因数而不是串联 为什么使用并联电容器来提高功率因数而不是串联为了保证补偿后的设备仍能正常工作。串联电容器和并联电容器之间电路结构的差异导致负载器件的操作状态不同。1.如果并联电路的电压相同,设备仍享有与补偿前相同的额定电...
- 提升办公效率:双通道USB切换器如何助力多任务处理? 双通道USB切换器:打造高效无缝的多设备工作流随着远程办公和多设备协作趋势的兴起,双通道USB切换器正成为职场人士不可或缺的生产力工具。它不仅简化了硬件连接,还显著提升了操作流畅度与资源利用率。1. 实现真正的“...