新iPhone是否会变相提高1TB的价格?

根据过去的经验,智能手机的存储容量会不时地增加。当出现更高规格的存储版本时,小容量存储模型将逐步淘汰。
以苹果公司为例。 iPhone的存储空间已升级多次。
iPhone 4的起始容量为16GB,最大容量为32GB。 iPhone 4s的最大存储版本已增加到64GB,并且相应的价格已经上涨。
目前,Android机型的存储空间基本为128GB,最高可达512GB。当然,这还可以满足消费者的需求以及大数据时代海量文件的存储需求,但仍然需要参考个人使用习惯。
但要注意的一件事是,由于内部存储不可更换并且不可能扩展存储卡,因此iPhone用户通常只能购买更多的剩余存储版本,而且具有不同存储规格的iPhone设备的价格差异也很大。不小。
有时,这也会使消费者非常“痛苦”。苹果仍将在2021年带来全新的iPhone,我们将其命名为“ iPhone13”。
暂且。最近,国外媒体报道称,苹果的新款iPhone可能会添加一个具有1TB存储规格的版本,从而使该手机成为真正的移动硬盘。
如果这个消息是真的,那么苹果很可能取消128GB版本,直接从256GB开始。用户可以再次体验“消费升级”的感觉。
苹果并不是第一个向其手机添加1TB存储版本的制造商。早在2年前,三星就推出了具有1TB存储容量的Galaxy S10机型。
目前,只有苹果移动设备的iPadPro系列具有1TB的容量,但是就定位而言,iPadPro毕竟是一台平板电脑,并且担负着“您的下一台计算机”的重要任务。拥有1TB的存储空间似乎更合理。
新iPhone是否会变相提高1TB的价格?我认为,整个存储规范的改进也是苹果一贯的定价策略。此设置无疑可以增加中间版本产品(例如256GB和512GB)的利润率。
对于消费者来说,如果您是大型游戏玩家,或者经常进行视频和照片拍摄等活动,那么对于只需要存储空间的朋友来说,选择具有更大存储空间的设备是合理的,但是您还必须承担一定的责任。存储溢价。
对空间使用有严格限制并且会定期清理的用户,即使他们选择128或256GB版本,这绰绰有余,但他们还需要考虑自己的手机使用年限。值得一提的是,长期以来可能将未来的iPhone13系列视为“十三香”,而Pro机型可能会使用LTPS技术来支持ProMotion? 120Hz高刷新率屏幕,并且可以动态调整刷新率以节省手机的电池消耗。
此外,屏幕下方的TouchID也可能会出现在这一代iPhone上。

公司: 深圳市捷比信实业有限公司

电话: 0755-29796190

邮箱: ys@jepsun.com

产品经理: 汤经理

QQ: 2057469664

地址: 深圳市宝安区翻身路富源大厦1栋7楼

微信二维码

更多资讯

获取最新公司新闻和行业资料。

  • double sum = 0.0; for(int i = 0; i < n; i++) { if(resistors[i] > 0) { sum += 1.0 / resistors[i]; 在C语言中计算并联电阻的总电阻是一个常见的应用问题,它涉及到基本的物理知识与编程技巧的结合。并联电路中的总电阻可以通过所有并联电阻倒数的和的倒数来计算。首先,我们需要定义一个函数来处理这一计算过程。例如...
  • N+P互补对MOS管31V至100V:高耐压N沟道器件性能解析 N+P互补对MOS管在高压应用中的核心优势在现代电力电子系统中,N+P互补对MOS管因其优异的开关特性与高耐压能力,广泛应用于电源管理、电机驱动及工业控制等领域。其中,工作电压范围覆盖31V至100V的N沟道MOS管,尤其适用于需要...
  • GB/T 1- 整流变压器与1.24V参考电压组件协同设计实践 GB/T 1- 整流变压器与1.24V参考电压组件的协同优化设计随着电力电子设备向智能化、高效化发展,整流变压器的设计不再局限于简单的变压功能,而是需要集成先进的控制策略。在此背景下,1.24V参考电压组件与国家标准 GB/T 1- 的...
  • 压敏电阻的电阻值是否会随着磁场的变化而变化? 压敏电阻是一种特殊的电阻器,它的阻值会随着外加电压或磁场的变化而变化。这种变化通常是由于压敏电阻中使用的磁性材料的磁化强度发生变化所致。当外加电压或磁场变化时,压敏电阻中的磁性材料会发生变化,导致其电...
  • 压敏电阻的电阻值是否会随着频率的变化而变化? 压敏电阻的电阻值确实会随着频率的变化而变化。这是因为压敏电阻中使用的磁性材料的磁化强度会随着频率的变化而变化,从而导致其电阻值发生变化。当频率变化时,压敏电阻中的磁性材料的磁致电阻效应会发生变化,从而...
  • 压敏电阻的电阻值是否会随着温度的变化而变化? 是的,压敏电阻的电阻值会随着温度的变化而变化。这种现象被称为压敏电阻的温度系数。压敏电阻的温度系数是指在给定温度下,压敏电阻的电阻值与温度的关系。不同类型的压敏电阻的温度系数可能会有所不同,但通常情况...
  • 压敏电阻的电阻值是否会随着时间而变化? 压敏电阻的电阻值通常不会随着时间而变化。这是因为压敏电阻的电阻值是由其内部材料和结构决定的,而这些特性通常不会随着时间的推移而改变。然而,压敏电阻的电阻值可能会因为某些因素而发生变化,例如温度和湿度。...
  • 电容是否能提高功率因数 提高功率因数的原理和方法1.原理:减少系统内的无功功率流。系统中的电机和其他设备消耗无功功率,因此需要电容器来补偿无功功率。电容器输出无功功率,平衡系统消耗的无功功率从而提高功率因数。2.方法:提高自然功率...
  • 压敏电阻的电阻值是否会随着液体的流动而变化? 是的,压敏电阻的电阻值会随着液体的流动而变化。这种现象被称为压敏电阻的惯性效应。惯性效应是指当压敏电阻与液体接触时,由于液体的流动而导致压敏电阻的电阻值发生变化的现象。这种效应的原因是液体的流动会对压...
  • 30V互补对N+P MOS管 在现代电子设备中,MOS管(金属氧化物半导体场效应晶体管)是不可或缺的组件之一,广泛应用于模拟和数字电路设计中。特别是对于30V互补对N+P MOS管,它在高压应用中表现尤为突出,能够提供优异的性能和稳定性。30V互补对N+...
  • N+P互补对MOS管工作原理 N沟道和P沟道互补型金属氧化物半导体(CMOS)技术是现代集成电路中最常用的技术之一。CMOS技术利用了N沟道MOSFET(NMOS)和P沟道MOSFET(PMOS)两种晶体管的互补特性,从而实现了低静态功耗、高噪声容限和较好的逻辑电平转换能力...
  • 高低压变压器的合格绝缘电阻是多少? 高低压变压器的合格绝缘电阻是多少?运行中的电力变压器绝缘电阻合格标准为:10KV及以下,绝缘值大于300兆欧姆;35KV等级,绝缘值大于400兆欧姆(环境温度为20摄氏度)。通过测量绝缘电阻,电力变压器可以有效地检测变压器...
  • P沟道与N沟道MOS管在31V至99V高压应用中的性能对比分析 引言在现代电力电子系统中,尤其是高压开关电源、工业控制、太阳能逆变器和电动汽车充电系统等领域,31V至99V范围内的MOS管选型至关重要。其中,P沟道与N沟道MOS管因其不同的工作原理和特性,在该电压区间内各有优势与适用...
  • 聚鼎1.0SMBJ瞬态抑制二极管TVS管参数应用及价格 聚鼎1.0SMBJ瞬态抑制二极管(TVS管)是电子设计中常用的保护元件,主要用于保护敏感电子设备免受静电放电(ESD)、雷击和其他电压瞬变的影响。这类器件在工业控制、通信设备、计算机接口、消费电子产品等领域有着广泛的应...
  • 31V至100V互补对N+P MOS管的应用与特性分析 在高压电力电子设备中,MOS管(金属氧化物半导体场效应晶体管)扮演着至关重要的角色。特别是那些工作在31V至100V电压范围内的MOS管,它们在电源管理、电机控制、LED驱动等众多领域发挥着重要作用。互补对N+P MOS管是指在同一...
  • 高精密贴片电阻阻值表标准阻值表E-96 0603F(+1%) Standard Resistance Table 标准阻值表1 E-96 阻值 代码 阻值 代码 阻值 代码 阻值 代码 阻值 代码 阻值 代码 10 01X 100 01A 1.00K 01B 10.0K 01C 100K 01D 1M 01E 10.2 02X 102 02A 1.02K 02B 10.2K 02C 102K 02D 10.5 03X 105 03A 1.05K 03B 10.5K 03C 105K 03D 10.7 04X 107 04A 1.07K 04B 10.7K 04C 107K 04D 11 05...
  • 如何正确选用100V P/N沟道MOS管?技术要点全解析 100V P/N沟道MOS管的选型与设计优化策略在电源管理与智能控制领域,合理选用100V耐压的P沟道与N沟道MOS管是保障系统稳定性和效率的关键环节。本文将从性能指标、电路拓扑、热管理等多个维度进行深入剖析。1. 电压与电流匹配原...
  • N+P互补对MOS管30V技术解析:结构、特性与应用优势 N+P互补对MOS管30V的基本原理在现代模拟与数字集成电路设计中,N+P互补对MOS管(即NMOS与PMOS构成的互补结构)是核心构建单元之一。其中,30V耐压等级的互补对MOS管广泛应用于电源管理、电机驱动和工业控制等领域。该器件通过在...
  • 深入理解N+P互补对MOS管:从材料到性能优化策略 互补对MOS管的核心组成与工作模式N+P互补对指的是在同一芯片上集成的NMOS与PMOS晶体管,它们共同构成互补逻辑门(如CMOS反相器)。这种结构以极低的静态功耗和优异的信号完整性著称,尤其适合高密度集成电路设计。1. NMOS与PM...
  • 如何在8V~29V系统中正确设计P/N沟道MOS管驱动电路 引言:驱动电路的重要性在8V至29V的电力电子系统中,正确设计MOS管的栅极驱动电路是确保器件稳定、高效运行的关键环节。无论是P沟道还是N沟道器件,若驱动不当,可能导致导通不完全、开关速度慢甚至击穿损坏。核心设计原...